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Abstract—In the last decade, the Resource Description Frame-
work (RDF) has become the de-facto standard for publishing
semantic data on the Web. This steady adoption has led to a
significant increase in the number and volume of available RDF
datasets, exceeding the capabilities of traditional RDF stores.
This scenario has introduced severe big semantic data challenges
when it comes to managing and querying RDF data at Web
scale. Despite the existence of various off-the-shelf Big Data
platforms, processing RDF in a distributed environment remains
a significant challenge. In this position paper, based on an in-
depth analysis of the state of the art, we propose to manage
large RDF datasets in Flink, a well-known scalable distributed
Big Data processing framework. Our approach, which we refer
to as FLINKer extends the native graph abstraction of Flink,
called Gelly, with RDF graph and SPARQL query processing
capabilities.

Index Terms—RDF, SPARQL, Flink, Big Semantic Data

I. INTRODUCTION

The Linked Open Data (LOD) cloud [7] is a collective, open
effort to interconnect data scattered on the Web into a standard
format that can be leveraged by diverse applications. This
interlinked graph data is based on RDF [35], a common graph-
based model, used to describe and link data at various degrees
of granularity. Nowadays, RDF is the de-facto standard for
representing heterogeneous knowledge on the Web, organized
around the emerging notion of knowledge graphs [39].

The latest edition of DBpedia (2016-10), a partial conver-
sion of Wikipedia to RDF, consists of more than 13 billion
triples (i.e., RDF statements). While LOD-a-lot [14], a dataset
integrating a partial crawl of the LOD cloud, includes more
than 28 billion triples from heterogeneous sources. It is not
surprising that Linked Data suffers from scalability challenges
when it comes to storing, indexing, processing and querying,
large collections of RDF triples [30]—typically through the
SPARQL [19] query language.

In recent years several approaches to efficiently process and
query RDF for such big semantic data scenarios have been
proposed. Besides efficient, compressed representations [15],
scalable RDF stores [8] and distributed indexes [37], recent
trends seek to leverage the potential of existing big data tools,
such as Apache Spark' [41] or Apache Accumulo [2], and
distributed computation, with a particular focus on vertex-
centric query resolution [4], [5], [31].

Thttps://spark.apache.org

Despite initial efforts towards efficient distributed SPARQL
query processing, there are still several open research ques-
tions. Empirical evaluations [3], [13], [31] show that the
noticeable differences in performance among existing query
engines are heavily dependent on: (i) the skewed structured of
RDF graphs, which can slow down graph processing, (ii) the
nature of the SPARQL queries, as some engines lack support
for certain SPARQL operators, (iii) the graph partitioning
strategy, as some approaches are only optimized to process
the full graph (which is rarely the case in selective SPARQL
queries) and; (iv) the non-optimized query plans, which can
generate multiple inefficient iterations.

In a step towards addressing these open challenges, in this
position paper we present FLINKer?, a proposal to use Flink?
[9], a Big Data platform, to process RDF data and resolve
SPARQL queries in a distributed and scalable manner.

Flink provides an open-source stream processing framework
for distributed and high-performing data processing that can
fit the high demands of large, ever-growing RDF datasets.
In addition, Flink provides a graph processing library called
Gelly, which we propose as a basis to represent and process
RDF graphs. Finally, we leverage the optimized iterative graph
processing capabilities of Flink to serve and resolve full
SPARQL queries at web scale. We expect that the combination
of Flink, RDF, and SPARQL will on the one hand enable
semantic practitioners to perform semantic processing and
novel analysis over large RDF datasets, and on the other
hand enable Flink practitioners to leverage the very expressive
SPARQL language to process and analyze large knowledge
graphs.

The remainder of the paper is organized as follows. Section
IT provides background information on RDF, SPARQL, Flink
and vertex-centric processing. In Section III we review the
current state of the art in RDF and SPARQL processing,
with a particular focus on existing Big Data frameworks.
Our FLINKer proposal is detailed in Section IV, where we
provide our initial insights on representing RDF in Gelly
and using Flinks capabilities to efficiently resolve SPARQL
queries. Finally, we discuss the approach in Section V and
conclude and provide future work in Section VI

2In German, FLINKer stands for “nimble, speedy, agile”.
3http:/flink.apache.org/
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II. BACKGROUND

In this section, we provide the necessary background in-
formation on the RDF data model and the standard query
language SPARQL, the vertex-centric distributed processing
paradigm and the Flink stream processing framework.

A. RDF and SPARQL

The RDF data model, is typically formalized as follows (cf.
see [18]): Assume infinite, mutually disjoint sets I (RDF IRIs
references), B (Blank nodes), and L (RDF literals).

Definition 1 (RDF triple): A tuple (s,p,0) € (IUB) x I x
(IUBUL) is called an RDF triple, in which s is the subject,
p the predicate and o the object.

Definition 2 (RDF graph): An RDF graph G is a set of RDF
triples. Thus, (s,p,0) can be represented as a direct edge-
labeled graph s 2 o.

RDF graphs can be grouped and managed together as an
RDF dataset [35], i.e. a collection of RDF graphs.

Figure 1 represents an RDF graph with five triples repre-
senting two persons, John and Alice, their emails and Alice’s
project. RDF is typically queried trough the standard SPARQL
[19] query language. SPARQL is an expressive declarative
language based on graph-pattern matching with a SQL-like
syntax. For instance, the query in Listing 1 retrieves the
homepages of the projects of those people known by John.

Listing 1: Example of a SPARQL query

PREFIX ex: <http://example.org>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?projectHomePage
WHERE {
ex:John foaf:known ?people .
?people foaf:pastProject ?project .
?project foaf:homepage ?projectHomePage .

SPARQL is based on graph pattern matching, where the
core component is the concept of a triple pattern, i.e., triples
where subjects, predicates and objects may be variables. This
is formalized in Definition 3, assuming a set V' of variables
that are disjoint from the aforementioned I, B and L.

Definition 3 (SPARQL triple pattern): A tuple from (/UBU
V)x (IUV)x (IUBULUYV) is a triple pattern.

The previous example showed three triple patterns, called a
Basic Graph Pattern (BGP). In general terms, BGPs are sets
of triple patterns in which all triple patterns must match. They
can be seen as inner-joins in SQL.

Definition 4 (SPARQL Basic Graph pattern (BGP)): A
SPARQL Basic Graph Pattern (BGP) is defined as a set of
triple patterns. SPARQL FILTERs can restrict a BGP. If B,
is a BGP and R is a SPARQL built-in condition, then (B;
FILTER R) is also a BGP.

Finally, it is worth mentioning that several constructions can
be applied over BGPs, such as grouping, alternative groups
with the UNION keyword, optional graph patterns with an
OPTIONAL keyword and restrictions by means of a FILTER
clause.

B. Vertex-Centric Model

Interest in distributed SPARQL query processing has in-
creased in recent years. In the following, we briefly describe
the vertex-centric model, one of the most prominent paradigms
for distributed processing.

The vertex-centric model, also known as “Pregel” or “think
like a vertex” [27] is a computational model proposed by
Google and inspired by the Bulk Synchronous Parallel (BSP)
model [38] to address the challenge of the efficient processing
of large scale graphs with billions of vertices. This com-
putation model is highly adaptable, while at the same time
providing guarantees with respect to performance, scalability
and fault-tolerance.

The computation in Pregel can be modelled as a directed
graph, where each processing entity represents a vertex of the
graph that can send messages to its connected neighbours.
Pregel based programs are based on a sequence of iterations,
called supersteps. In each superstep the framework calls a user-
defined function that determines the behavior at a single vertex
in the iteration.

The framework introduces a message passing model for
communication between vertices during the iterations. Each
vertex can read the messages sent from the previous superstep
and modify the current state of the vertex as well as the
outgoing edges. The framework subsequently sends messages
to the other vertices so that the updated values can be used in
the next superstep.

C. The Flink architecture

Apache Flink [9] is an open source distributed dataflow
processing framework that supports a single environment for
batch and stream processing. When it comes to parallelization,
Flink supports a generalization of the MapReduce program-
ming model commonly known as the parallelization contract
or PACT programming model.

1) Flink Overview: Flink affords large scale data applica-
tions, high throughput, low latency and fault tolerant process-
ing. Flink is a true stream processing engine. Thus, batch and
stream processing are supported on the basis of two types of



streams: unbounded streams, which are used to develop stream
applications, and bounded streams, used for batch processing.

Flink offers different level of abstractions to develop stream
and batch processing applications, as shown in the Figure
2. The lowest abstraction level provided by Flink is called
Stateful Stream Processing, which is then encapsulated in
a higher abstraction level that provides the core APIs of
Flink, DataStream and DataSet. Both can be seen as im-
mutable, distributed data collections, with a finite (DataSet)
or unbounded (DataStream) number of elements. These core
APIs provide data transformation operators, such as filter,
map, join, grouping and aggregation, that require user-defined
functions (UDFs) as arguments in order to construct a new
data collection from either a data source or another data
collection. In addition, Flink provides a declarative domain-
specific language through the Table API, which offers a
relational-like model abstraction. Finally, the highest level of
abstraction proposed by Flink is the SQL library, which allows
users to implement Flink programs as SQL query expressions.
Finally, our FLINKer approach to support RDF processing via
Flink, based on the Gelly library, is represented at the same
level of abstraction as the SQL library. The specifics of the
FLINKer approach will be presented in Section IV.

The Flink dataflow program typically starts by constructing
data collections such as DataSet or DataStream from different
data sources, e.g HDFS files, Kafka topics4, etc. Then, a
chain of data transformations are applied on these distributed
collections. Finally, the results are retrieved via data sinks that,
for example, write the results to distributed files.

Flink provides support for the data distribution, process
optimization and parallel processing over clusters of machines.
Furthermore, several libraries for diverse analytical tasks are
implemented on top of Apache Flink. For instance, FlinkCEP
and FlinkML are two well-known libraries to deal with end-
less complex event processing and scalable machine learning
algorithms, respectively. Moreover, Flink introduced the Gelly
library, which contains a set of methods for graph analysis as
well as graph algorithms that support graph processing.

2) Flink and the PACT Model: The parallelization contract
programming model (PACT) [6] was proposed to generalize
two MapReduce concepts [11], namely second-order functions
and contracts. The main purpose of PACT is to simplify the
process of parallel Web-scale dataflow processing. A PACT
operator receives one or more input datasets that contain a
predefined data type in addition to a user-defined function that
will be applied to the input dataset on several cluster nodes.
Then, the PACT operator will produce one or more outputs.

The PACT model consists of two main components, the
input contract and the output contract. The input contract
defines how the user-defined functions will be evaluated in
parallel, i.e., the contract determines how the input data will
be divided into disjoint fragments that can be processed
independently in a parallel dataflow configuration. In turn, the
output contract provides the PACT compiler with additional

“https://kafka.apache.org/

information that allows the optimizer to generate more efficient
program execution strategies.

In practice, a PACT program can be represented as a
sequence of PACT operators where the output of one operator
can be consumed as an input of other operators. Thus, the
PACT compiler first transforms the dataflow into a Directed
Acyclic Graph (DAG) of operators. Then, the DAG is used
to generated multiple execution strategies. The most efficient
strategy is selected based on a cost function that estimates the
least amount of data movements between clusters nodes [21].

The Apache Flink framework currently provides 22 data
transformation operators® (e.g. join, reduce, filter, aggregate,
union, etc.), which follow the PACT programming model.
In addition, Flink uses a PACT-based optimizer in order to
produce an optimized Flink execution plan, following the
same procedure mentioned previously. It is worth mentioning
that the Flink optimizer computes the cost function based on
valuable resources utilization such as data shipping over the
cluster network, memory utilization and hard disk I/O costs

III. STATE OF THE ART

Generally speaking, RDF triple stores support SPARQL
queries based on: i) a relational schema; ii) a native index; or
iii) a NOSQL solution. As an example of the former case, the
relational-based Virtuoso [8] represents RDF data in a column-
based store, with two full indexes over the RDF datasets and 3
projections to support and speed up SPARQL queries. As for
native indexes, RDF stores often speed up queries by indexing
different combinations of the subject, predicate and object
elements in RDF [20], [24]. The well-known Apache Jena
TDB® stores RDF datasets using 6 B+Trees indexes in order
SPOG, POSG, OSPG, GSPO, GPOS and GOSP, where S, P
and O represent the subject, predicate and object respectively,
and G represent the graph in which the triple holds. A recent
approach, RDF-4X [2] implements a cloud-based NOSQL
solution using Apache Accumulo’. Blazegraph® (formerly
BigData) follows a similar NOSQL using six indexes.

A. Big Data tools based RDF Engines

The increasing availability of new RDF datasets has led to a
need for distributed RDF engines in order to deal with the im-
practicability of executing complex queries using centralized
engines. Over the years, several distributed RDF processing
engines (cf. the Hadoop-based query engine proposed by [33]
or the Spark-based query engine presented in [36]), have been
proposed in order to bridge the gap between data volumes
and performance demands. Although distributed RDF systems
provide access to more system resources such as memory
sizes and greater processing capacity, they face the problem
of intermediate data shipping between clusters nodes. In the
following, we provide an overview of existing distributed RDF

5See https://ci.apache.org/projects/flink/flink-docs-release- 1.5/dev/stream/
operators/index.html#datastream-transformations.

Shttp://jena.apache.org/documentation/tdb/index.html

7ttps://accumulo.apace.org/

8https://www.blazegraph.com/
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processing approaches that aim to enable RDF querying with
SPARQL via big data tools.

1) Hadoop based RDF processing engines: SHARD [29]
is a hadoop-based triple store that makes use of MapReduce
jobs in order to evaluate SPARQL queries on RDF datasets. In
SHARD, the entire dataset is stored in a single file on HDFS
(i.e. without any partitioning scheme), where each line groups
all triples corresponding to one subject. SHARD follows an
approach called Clause Iteration for query processing, which
performs a sequence of MapReduce iterations. Each iteration
is responsible for executing a subquery clause, while the result
of every subquery is incrementally joined with the following
iteration. The final iteration removes duplicates and filters
bounded variables according to what was requested in the
SELECT query.

HadoopRDF [12] supports SPARQL queries on top of
Hadoop by leveraging the HDFS file partitioning and distri-
bution capabilities. In contrast to SHARD, HadoopRDF splits
the data into multiple files based on the predicate of the RDF
triples, which is traditionally referred to as Vertical Partition-
ing (VP) [1]. After the partitioning phase, HadoopRDF creates
a query plan that minimizes the MapReduce tasks as well as
the intermediate results.

CliqueSquare® [16] focuses on minimizing the number of
MapReduce jobs and the data movements between the server
nodes. To achieve the aforementioned goals, the CliqueSquare
engine exploits the default replication mechanism in HDFS
and. Additionally, CliqueSquare partitions triples based on
hashing the subjects, predicates and objects. Moreover, another
partitioning is performed on each node by grouping the triples
that have the same predicate in one file.

H2RDF+ [28] is a distributed RDF data store based on
MapReduce processing and Hbase'? indexes. H2RDF+ utilizes
Hbase in order to create six indexes on the RDF triples, so
that all triple patterns can be answered in a single table scan.

%https://team.inria.fr/oak/projects/cliquesquare/
10https://hbase.apache.org/

H2RDF+ employs merge joins along with a greedy algorithm
to determine the least costly joins.

Finally note that several distributed SPARQL query frame-
works translate SPARQL queries to Hadoop SQL-Like queries,
such as PigSPARQL [32] based on Apache Pig'!, and Apache
Sempala [33] that relies on Apache Impala'?.

2) Spark based RDF processing engines: S2RDF [34] is a
Spark-based SPARQL query processing engine that is based on
translating SPARQL queries to SparkSQL. In addition, S2ZRDF
introduces ExtVP, a novel partitioning strategy that extends
the aforementioned idea of vertical partitioning. ExtVP pre-
computes a semi-join reduction of vertical partitioning tables.
This reduction produces semi-join tables that are smaller than
the base table. Therefore, ExtVP reduces the unnecessary
input/output operations and avoids excessive memory con-
sumption during join operations.

S2X [31] is a SPARQL query engine that makes intensive
use of GraphX, the graph-parallel library of Spark, as well
as data-parallel operators provided by Spark. S2X defines a
property graph representation of RDF for Graphx, and applies
a vertex-centric model for BGP matching.

In turn, the SPARKRDF [40] engine partitions the RDF
graph into multi-layer elastic subgraphs, creating five indexes
with different granularities in order to speed up SPARQL
query resolution. Note that, in order to support faster joins,
all intermediate results reside in memory. The query plan of
SPARKRDF is generated based on a greedy algorithm that
aims to avoid data shuffling and the reduction of intermediate
results.

SPARQLGX [17] executes SPARQL queries over Spark
by translating SPARQL queries into Scala code. SPARQLGX
also uses vertical partitioning based on the predicates of the
RDF triples, and computes statistics to execute plans with less
intermediate results.

Finally, SANSA [25] is an initial effort to leverage the
currently existing big data frameworks such as Apache Spark

https://pig.apache.org/
Zhttps://impala.apache.org/



Flink Operator

Description

Map

Map transformation applies a user-defined map function to each element of the input DataSet. Map insures that the function takes
one element as an input and produces one and only one element, so that map transformation assures one-to-one relation between
input and output DataSets.

FlatMap FlatMap transformation takes a user-defined function as an argument and applies the function to each element of the input DataSet.
When the map function is applied to each element of the stream, it produces a stream of new elements so the output could be
zero, one or more elements.

Filter Filter transformation takes a user-defined predicate that allows a predefined filtering criteria to be applied to each element in the
input DataSet, so that it could decide which items should be kept or eliminated from the output DataSet.

Project Project transformation enables selecting a subset of DataSet fields from user-defined tuples so that the output DataSet returns the
selected subset.

FlatJoin FlatJoin transformation joins two DataSets by generating all pairs of elements that hold the same values for the specified keys. The
Flink join operator provides the option to execute a JoinFunction which produces exactly one output element or a FlatJoinFunction
which turns pairs of elements into zero or more elements.

ReduceGroup ReduceGroup groups DataSet elements based on a specific key. On each group of elements, a user-defined function is applied

thereby it reduces the count of output elements.

Iteration Operators

Flink provides two types of iterations: Bulklteration and Deltalteration. Iteration Operators are useful for implementing loops by

performing part of the program repeatedly and then forwarding the results to the next iteration.
o BulklIteration: a normal loop which iterates over the entire input whether it is the result from the earlier iteration or the
initial DataSet; passes the result as a partial solution; the loop terminates by reaching the maximum number of iterations.
o Deltalteration: supports incremental loops that modify a subset of the elements in the solution rather than recomputing it.

TABLE I: Subset of Flink operators used in FLINKer

and Apache Flink to manipulate, store and analyze RDF data.
The proposed framework architecture aims at reading/writing
RDF to HDFS, supporting SPARQL, RDF inference, OWL
and machine learning algorithms on top of RDF data. In spite
of the initial engine based on converting SPARQL to SQL,
the evaluation of the SPARQL engine at large scale is still
pending.

To the best of our knowledge, our work is the first approach
proposing to resolve SPARQL using a vertex-centric approach
on top of the Flink/Gelly graph-processing infrastructure. A
similar paradigm has been recently followed [22] to implement
the well-known Neo4] Cypher query language'3 on top of
Flink and Gelly.

IV. SPARQL QUERY PROCESSING IN FLINK

Big data tools such as Spark and Flink are distributed data-
parallel frameworks that are designed to support efficient pro-
cessing of data-centric algorithms by taking care of the paral-
lelization aspects, thus taking this burden off the programmers.
Recently, these frameworks provide graph processing APIs
(such as GraphX in Spark and Gelly in Flink) so that graph
processing systems could benefit from the scalable processing
infrastructures. In addition, unlike MapReduce frameworks,
the distributed dataflow systems present a wide range of
operators which can be executed efficiently in main memory.

In the following, we present FLINKer, our proposal to
manage large RDF datasets and resolve SPARQL queries on
top of Flink/Gelly. First, we provide an overall description of
our architecture. Then, we introduce a suitable representation
for RDF graphs in Gelly. Finally, we outline how Flink and
the distributed dataflow operators can be used to support a
vertex-centric resolution of SPARQL.

13See https://neodj.com/developer/cypher-query-language/

A. FLINKer Overview

FLINKer is an RDF graph processing system on top of
the distributed Apache Flink framework. FLINKer combines
the data-parallel operators provided by the Flink core APIs
and the graph-parallel abstraction offered by the Gelly library
(shown in Figure 2), in order to provide a SPARQL query
engine compatible with the existing Flink ecosystem. That is,
FLINKer is aimed at positioning SPARQL as the candidate
high level query language for graphs in Flink, complementing
the existing Flink SQL libraries (and other extensions such
as the aforementioned support for the Cypher query language
[22]).

In practice, FLINKer makes use of Gelly to provide the
vertex-centric view on graph processing, and the DatasSet
API operators to support each of the transformations required
to resolve SPARQL queries. Table I shows a subset of
Flink DataSet transformations that are used for implementing
SPARQL query operators. For example, the join operator is
performed using a combination of Flink operators such as
Filter transformation and Iteration operators.

In the following, we will concisely discuss the proposed
components of the FLINKer engine, which is depicted in
Figure 3.

B. RDF Graph Loader in Flink

The FLINKer RDF graph loader is the component responsi-
ble for ingesting RDF data into Flink. Thus, we read triples in
the RDF N-Triples format (i.e. one triple per line) and convert
them into the corresponding Gelly graph representation that
is suitable to be loaded in Flink. Note that the design of the
graph data structure plays a key role for the overall efficiency
of the query engine in a distributed dataflow scenario, given
the importance of efficient read/write access to the data as well
as efficient data shuffling.

Listing 2 represents the code to load the following RDF
triple from Figure 1, {ex:John, foaf:knows, ex:Alice), based
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on Gelly data structures. First, the Verfex data type represents
the subject (ex:John) and the object (ex:Alice) values. Note that
each vertex consists of the concrete value and a given identifier
(of type long in our example). While, the RDF predicates
are represented by the Edge data type. An edge is defined
by a source vertex identifier, a target vertex identifier and a
predicate value ((foaf:knows in our case). Finally, the lists of
all vertices and edges are used to create the final Gelly graph
data structure.

Listing 2: Loading RDF data in Gelly

// Create Flink environment
ExecutionEnvironment env = ExecutionEnvironment.
getExecutionEnvironment () ;

// E.g. add the triple, (ex:John, foaf:knows, ex:Alice)

Vertex<Long, String> vertexl = new Vertex<Long, String> (1L,
"ex:John");

Vertex<Long, String> vertex2 = new Vertex<Long, String> (2L,
"ex:Alice");

Edge<Long, String> edgel =
foaf:knows");

new Edge<Long, String> (1L, 2L, "

// Load all vertices (RDF nodes)
List<Vertex<Long, String>> vertexList =
<Long, String>>() {{
add (vertexl);
add (vertex?2) ;
}}i

new ArraylList<Vertex

// Load all edges (triples)
List<Edge<Long, String>> edgelist =
, String>>() {{
add (edgel) ;

new ArrayList<Edge<Long

}}i

// Create the graph
Graph<Long, Long, String> graph =
vertexList, edgelist, env);

Graph.fromCollection (

C. Query Processing and Vertex-centric BGP Matching

The FLINKer query processing is based on translating
SPARQL queries into relational operations'#, which are then
resolved through the existing operators in the DataSet API of
Flink.

14In practice, FLINKer uses the Jena ARQ [10] SPARQL processor to parse
a given SPARQL query and generate a parsing tree of operations

In particular, FLINKer performs basic graph pattern (BGP)
matching of SPARQL queries based on the vertex-centric
model. The computation is performed through a sequence of
iterations steps called supersteps. First the triple patterns of
the BGP are broadcast to all graph vertices. After that, each
vertex matches its edge labels with the triple’s predicate. In the
next iterations, the match candidates are iteratively validated
between neighbor vertices using message exchanging. Finally
the partial results are incrementally unioned. An example of
this process for a given BGP is outlined in Algorithm 1 (cf.
see [31] for a similar approach in Spark). In a first superstep
(lines 3 -12), for each triple pattern in the BGP (line 4) we
iterate over each edge in the graph (line 6), i.e. each triple,
and we check if it can match the corresponding triple pattern
(line 7). In such case, we add the subject and object as a
potential candidate vertex (lines 8-9). If a triple pattern is not
matched, we can automatically assure that no solution in the
graph can be found, and the execution is finished (lines 11-
12). Otherwise, in a series of supersteps (lines 12-20), we
check the validity of each candidate vertex with respect to
the full BGP (line 15). If the match is still valid (line 16),
we add the neighbors of the vertex as potential candidates for
further solutions, and we send a message to the neighbors for
validation in the next supersttep (lines 17-18). Otherwise, if
the vertex is no longer valid, we remove it from the candidates
(line 20). The final candidate vertices are then valid and
returned as the final solution (line 21).

Gelly supports this vertex-centric model via two user-
defined functions: a vertex computation function that validates
the match candidates and a function that implements the
message which is sent to other vertices.

Gelly implements iterative algorithms by defining a step
function and passing it to the iteration operators. As shown
in Table I, Flink has a particular graph processing feature,
as it provides two versions of the iteration operators: Iferate
and Delta Iterate'. The Delta Iterate operator leads to more

15See https:/flink.apache.org/news/2015/08/24/introducing-flink- gelly.html



Algorithm 1: BGPMATCHING

Input: G:(V.E), BGP:Set[(s,p,0)]

Output: The vertices matching the given pattern
1 candidateVerter < ()

2 candidate BGP + ()

3 // Superstep 1

4 foreach tp € BGP do

5 foundCandidate < false
6

7

8

9

foreach (v, predicate,v,) € E do

if match(tp,vs, predicate, v,) then
candidateV ertex < candidateVertex U v
candidateVertex < candidateVertex U v,
foundCandidate < true

11 if foundCandidate == false then
12 | return 0

13 // Supersteps 2..n
14 foreach v € candidateVertexr do
15 valid « validate M atch(v, BGP)
16 if valid == true then
candidateVertex

candidateV ertex U neighbors(v)
sendToN eighbors(v)

18
19 else
20 L candidateVertex < candidateVertex \ v

21 return candidateVertex

efficient incremental algorithms through identifying two input
sets: WorkSet and SolutionSet. WorkSet contains the graph
elements that require re-computation in the next iteration,
while the SolutionSet represents the current solution state of
the input.

The vertex-centric model provided by Gelly is internally
mapped to a Delta Iteration. Thus, the SolutionSet is the vertex
set of the input RDF graph while the WorkSet holds the active
vertices (RDF subjects and objects), i.e. those vertices that
have received messages from the previous supersteps. In each
superstep, the messages are sent to the vertex neighbors by
using the coGroup operator to co-group the active vertices
(i.e. the WorkSet) considering the different edges. Next, the
vertex-update function is applied by co-grouping the messag-
ing function results with the current vertex values (i.e. the
SolutionSet). Finally the output of the coGroup operator is
used to update the SolutionSet in addition to preparing the
WorkSet for the next iterations.

Note that the main advantage of using Gelly as a backend
is that Flink has native iterative support, i.e. the iterations do
not require new job scheduling overheads to be performed. In
addition, the Flink optimizer is able to detect if there is loop
invariant data so it will be pushed out of the loop to enhance
the performance. Moreover, Gelly maintains the state as an
index so that the updates are very efficient.

V. DISCUSSION

Providing efficient and scalable distributed SPARQL query
resolution on top of existing Big Data engines is a relevant
and emerging area of interest, unfortunately, the few current
approaches are compromised by performance drawbacks at

Web scale [3], [13], [31]. Our current work is focused on
the efficient implementation and optimization of distributed
SPARQL query resolution in Flink, based on the inherent
capabilities of Gelly, its graph processing framework. Our
main efforts concern two complementary challenges, data
distribution and auxiliary indexing.

a) Data distribution: The logical idea of data distribution
is to distribute related data to identical storage nodes to
minimize the connections between nodes. In the graph-based
scenario of RDF data, this means to provide a graph parti-
tioning strategy to keep the related vertices in identical nodes
[23]. In spite of existing RDF graph partitioning approaches
[26], no strategy is optimal for all SPARQL queries and RDF
structures [3]. Investigating which partition strategy to use in
which situation remains an open challenge.

b) Auxiliary indexes: In our current proposal, we exploit
the native Gelly graph processing mechanisms, with particular
attention to the iterative model to support efficient vertex-
centric SPARQL query resolution. In addition, different auxil-
iary indexes could be built to boost the current performance. In
particular, it is worth mentioning that, in the current approach,
each vertex and edge carries both the textual representation
of the corresponding term (i.e. the subject, predicate or object
textual value), as well as an identifier to denote the such vertex
or edge respectively. Several RDF engines, such as HDT [15],
split this information and consider an RDF dictionary to map
all RDF terms to identifiers, while the graph structure is then
represented as a graph of identifiers. The same philosophy
can be used in Gelly, where a dictionary can be indexed in
a Flink dataset, which can be distributed among the nodes,
and the graph of identifiers can be represented in Gelly. In
addition, in-memory auxiliary indexes, e.g. represented in the
aforementioned compressed HDT structure, can be built to
improve the performance of certain queries. For instance,
highly connected vertex (i.e. nodes with a high out-in degree)
can be grouped and represented in HDT indexes in order to
avoid the well-known overhead of the vertex-centric approach
in such scenarios [31].

c) Cost Based Optimization: The order of Flink op-
erators has a significant impact on the optimization of the
query execution. Apache Flink offers a dataflow optimizer
that determines the suitable join strategy for the execution
plan. Flink optimizer selects between partitioning as opposed
to broadcasting in addition to hash join versus sort-merge join.
In addition, FLink optimizer benefits from reusing partitioning
and sort orders across operators and super steps. However,
the Flink optimizer lacks optimization capabilities that we are
considering to address in FLINKer. First, the optimizer does
not use statistics about data characteristics which is crucial
for the query performance, hence we plan to consider pre-
computed statistics about the dataset. Moreover, Flink does
not optimize the operator reordering. In FLINKer, we plan to
exploit the operators reordering for better query performance.
Finally, The data sources are always fully scanned. However,
FLINKer aims at supporting smart data scanning with pre-
select and project operations.



VI. CONCLUSIONS AND FUTURE WORK

Herein we have introduced FLINKer, an approach to dis-
tribute RDF processing and querying via Flink’s native stream-
ing processing framework. We have reviewed current vertex-
centric distributed graph processing approaches and discussed
how the Flink architecture, and its graph processor (Gelly),
can be extended to support SPARQL queries over RDF data.
We also highlighted challenges and potential optimizations,
such as efficient graph partitioning and query planning.

In future work, we plan to optimize SPARQL query plans to
take advantage of the Flink native features, exploring different
partitioning strategies. Finally we aim to perform a large scale
evaluation to compare FLINKer against the existing state-
of-the-art RDF engines providing distributed SPARQL query
resolution.
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